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ABSTRACT

The Blue Noise Mask (BNM) is a stochastic screen that produces visually pleasing blue noise. In its construction, a
filter is applied to a given dot pattern to identify clumps in order to add or remove dots and thereby generate a correlated
binary pattern for the next level. But up to now, all the filters were selected on a qualitative basis. There is no reported
work describing precisely how the filtering and selection of dots affects the perceived error of the binary pattern. In this
paper, we will give a strict mathematical analysis of the BNM construction based on a human visual model, which
provides insights to the filtering process and also prescribes the locations of the dots that will result in a binary pattern
of minimum perceived error when swapped. The analysis also resolves some unexplained issues noticed by other
researchers.

Keywords: halftone, Blue Noise Mask, human visual model

1. INTRODUCTION

Stochastic screening has been an active research field in recent years. Blue noise halftone screens were first developed by
Mitsa and Parker ! in 1991. The BNM combines the blue noise characteristic of error diffusion 2 and the fast speed of
ordered dither. The original BNM was constructed for one grey level at a time beginning with an intermediate starting
binary pattern, or seed. Each subsequent level was constrained by the binary pattern at a preceding level, such that a
single valued function, or ordered dither array was constructed with desired first order and second order statistics. At each
level, a circularly symmetric filter was used to identify and eliminate low frequency structures (large "clumps")
incompatible with the desired blue noise power spectrum. Implicit periodicity, or "wraparound" filtering was used so
the BNM could be seamlessly tiled with itself to cover larger image spaces. Yao and Parker ? later proposed a simpler
and more efficient approach that further reduced the low frequency contents of the halftone patterns of the BNM.
Ulichney * also used a filtering approach which he called the "void and cluster” method to generate a blue noise screen.

Using the filtering approach to generate a blue noise screen is efficient and easily implementable. When using the
filtering approach to generate a blue noise pattern starting from a white noise pattern, the filter is applied repeatedly to
the pattern to locate the centers of black and white clumps and then the values of the clump centers are swapped, thus
diminishing the clumps. Similarly, in making a blue noise screen, the filter is used to find locations to add black or
white pixels. However, all the reported work has been done on a qualitative basis. In the following section, we will
derive the mathematical expressions for the filtering approach based on a human visual model and we will explain what
is happening to the perceived error of the halftone pattern during the filtering and swapping process.

2. ANAI YSIS OF FIL. TERING PROCESS
2.1 The human visual model

Our analysis of the filtering approach is based on a human visual model, which is basically a low-pass filter. The
following is a model given by Daly 7 :
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where a=2.2,b=0.192,c=0.114and d = 1.1; ij is the radial spatial frequency in cycles/degree and f__ is the
frequency at which the function peaks. To incorporate the decrease in sensitivity at angles other than horizontal and
vertical, the radial frequency is scaled such that fij - fij / s(8), where

5(6)=(1;W)cos(46)+(lzwj @)

where w is a symmetry parameter.

2.2 Changing one black pixel to a white pixel

In this section, we consider the case of changing one black pixel to a white pixel and try to minimize the perceived
error between the constant grey level and the perceived binary pattern.

Given a current binary pattern b(i,j) for level g and a human visual model, filter h(i,j), find the locations of the black
pixels to be converted to white pixels that will minimize the mean squared error of the level g' = g + Ag and the
perceived binary pattern for level g'. For a BNM of a size greater than 16x16, more than one pixels need to be changed
to move to the next level. We will first consider the case of changing one black pixel to a white pixel. The perceived
binary pattern for level g is:
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where NxN is the size of the BNM and mod means modulo. The modulo operation gives the filter a "wrap-around"
property which eliminates any border discontinuity when the BNM is tiled to cover larger image space. Suppose we

change a black pixel at (iy, jo ) to a white pixel, the binary pattern for level g’ will be:
b'(i,j) = b(i,j) + 8(i —ig.j — Jo) @)

and the perceived binary pattern for level g' is:
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From equations (3) through (5) we obtain:
£ (i,3) = £(5,3) + h{(i = i0) g n>(i = i0)mog ©)
The MSE for the perceived binary pattern for level g' is:
N-IN-1 2
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Our goal is to find the location (io, jO) which corresponds to a black pixel and which minimizes E'?. Expanding the
right side of the equation (7) we obtain:
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There are four terms on the right side of the above equation. Since g' is a constant and f(i,j) is known, the first term in

equation (8) is fixed. The second term is a summation of the shifted filter squared over the support of the BNM. Due to
the "wrap-around" property, this term is constant. For the same argument, the fourth term is also a constant. Let
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where G(io, jo) is a function of iy and j,. It follows that minimizing E' is reduced to minimizing G(io, jO).

Substituting (3) into (9) we have:
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G(io,jo)= b(m,n) h((i_m)modN’(j— n)modN)h((i _io)modN’(j_jO)modN) (11)
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Again, the "wrap-around" property simplifies the above equation:
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which is the circular autocorrelation (for simplicity, we will use "autocorrelation” for "circular autocorrelation” from
now on) of h at (m —1ig,n —jo) and can be denoted as Rh((m - io)mOdN,(n _jo)modN)' Substituting into (11) and

making use of the symmetry of the autocorrelation function, we obtain:
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In the frequency domain, R,, corresponds to |H|2 It can be easily seen that G(io, jo) is the circular convolution of the
binary pattern for level g with a new filter that is the autocorrelation function of h.

Examination of equation (11) tells us that to minimize G(io, jo), or the perceived error for level g' measured by the
human visual model h, we should use R, the autocorrelation function of h, instead of the human visual model itself, to
filter the binary pattern for level g, and find the black pixel (io, jo) that gives the minimum value of the filtered pattern.

To look at it some other way, the filter we use to search for the pixels to be changed will result in minimum mean
squared error measured by another filter. If a Gaussian filter is assumed as the human visual model, the actual filter that

should be used has a standard deviation of go in the frequency domain, where ois the standard deviation of the

Gaussian human visual model. Mitsa and Parker ¢ found empirically that using the principal frequency as the cut-off
frequency in the filter design did not generate the most visually pleasing patterns. Instead, under certain experiments
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they found that a factor of % should be applied to the principal frequency to obtain the best pattern. Our theoretical

analysis shows that this is not a coincidence. For a symmetric Gaussian filter, the autocorrelation R; of h is obtained
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by simply replacing ¢ with %c, which will shift the cut-off frequency by a factor of % Equation (11) also

explains why the filtering approach works in BNM design, that is, using the appropriate filter to find the loacations of
pixels to change can minimize the perceived error of the resulting pattern.

2.3 Swapping multiple dots

In the previous section, we solved the problem of finding the single black or white pixel, which when swapped,
yields the minimum MSE of the new binary pattern. Normally, the size of a BNM is larger than 16x16, which means
multiple dots have to be swapped to reach the next level. Intuitively, swapping one dot each time and minimizing the
MSE at every step may not give us the dots that minimize the MSE for the next level. The added dots will interact
with each other as well as interact with the dots of level g. The ideal way would be to simultaneously identify and
convert a group of pixels. Suppose that P black pixels need to be changed to white pixels to move from level g to g'.
Taking the same approach as the last section, we have:
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Let's examine how we can find the P black points in f(i,j) which, when converted to white, will minimize E?, or
G(io, jo). To minimize the first term of G(io, jo), we use the autocorrelation function Ryof h as a filter and apply it

to the binary pattern for level g. We find the P black pixels with the smallest filtered values, which will give the
minimum value of the first term. For the second term, assuming that we are dealing with a Gaussian low pass filter,
then R, is Gaussian too. The Gaussian filter decreases exponentially as the distance from the origin increases, which

means that for the second term to be minimum, the distance between the P black pixel should be as large as possible,
which requires that the P black pixels be distributed as uniformly as possible in the NxN dimension of the binary

pattern. To minimize G(io, jo ), we should take both terms into consideration. For many levels, the first term will be

the dominant factor in the perceived error, because there are many more terms in its summation than in the second term.
However, the second term can play an important role in some cases, especially at extreme levels. For example, when
we start from level 0 and move to level 1, the first term is 0 and the minimization depends solely on the second term.
When two of the P black pixels we choose are too close to each other, they can contribute considerably to the second
term. We should also point out that the filter R, cannot guarantee the relative positions of the P black pixels. It is
very likely that two neighboring black pixels are picked by the filter to be swapped, which will increase the second term
immediately. Equation (12) also provides guidance to our BNM construction algorithm. As we use our filter to pick
the candidates to be swapped, we should make sure that any two of the candidates are not close neighbors.

3. CONCLUSION

In our analysis of the minimization problems, we demonstrate that in order to minimize the MSE of a binary pattern
using a human visual model h, the autocorrelation of h should be used as the filter to choose candidates to be swapped,
although some restrictions should be imposed on the candidates, for example, the P black pixels should not be close
neighbors in the case of swapping multiple dots. The BNM so constructed minimizes the perceived error of a binary
pattern based on the human visual model, resulting in visually pleasing patterns.
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